Posted On: May 13, 2024
Confusion Matrix, also known as the error matrix, is a table to describe the performance of the classification model on the set of test data. The rows in this table represent the predicted class while the column presents the actual class. In this table, the number of correct and incorrect predictions are described with the count values so we can get insights into the errors and the type of errors made.
Never Miss an Articles from us.
Machine learning harnesses algorithms and data to accomplish tasks, imbuing systems with the capacity to learn from data. Sophisticated algorithms facilitate the construction of mathematical models, e..
two types of Machine Learning: Supervised, using labeled data to predict outcomes, and Unsupervised, finding hidden structures in unlabeled data...
ROC curve visualizes classifier's ability to distinguish classes via TPR and FPR, crucial for evaluating model performance...